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Introduction 

There are currently few proven treatment options for coronavirus disease (COVID-19), which is 

caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Human convalescent 

plasma has been successfully used for prevention and treatment of other infections and thus may 

provide an option for treatment of COVID-19 and could be rapidly available from people who have 

recovered from disease and can donate plasma. 

Passive antibody therapy involves the administration of antibodies against a given infectious agent to 

a susceptible or ill individual for the purpose of treating an infectious disease caused by that agent. In 

contrast, active vaccination requires the induction of an immune response to the vaccine that takes 

time to develop and varies depending on the vaccine recipient. Some immunocompromised patients 

fail to achieve an adequate immune response. Thus, passive antibody administration, in some 

instances, represents the only means of providing immediate immunity to susceptible persons and 

more predicable immunity for highly immunocompromised patients. 

In CSSC-004, we hypothesize that convalescent plasma will mitigate progression to severe COVID- 

19 disease state for individuals with recent infection by SARS-CoV-2 and who are currently 

outpatients. A multi-center randomized clinical trial will be conducted to test this strategy. Our primary 

hypothesis is that among individuals with SARS-CoV-2 infection and receiving anti-SARS-CoV-2 

plasma, the cumulative incidence of hospitalization or death prior to hospitalization that is related to 

COVID-19 infection will be lower than among those receiving control plasma over the course of 

follow-up. A secondary hypothesis is that individuals receiving anti-SARS-CoV-2 convalescent 

plasma are likely to have less disease severity than control participants not receiving anti-SARS-CoV- 

2 convalescent plasma. 

 

Study Design 

CSSC-004 is a two-arm, parallel-group, multi-center, randomized superiority trial in which outpatient 

adults with recent SARS-CoV-2 infection will be randomized to receive either human coronavirus 

immune plasma (HCIP, active comparator) or control (SARS-CoV-2 non-immune) plasma. This 

randomized, double-blind, controlled, phase 2 trial will assess the efficacy and safety of HCIP to 

reduce the risk of hospitalization or death, the duration of symptoms, duration of nasopharyngeal or 

oropharyngeal viral shedding, oxygen saturation levels, rate of secondary infection of housemates 

and rates of persistent COVID-19 symptoms on D90. Adults 18 years of age or older, regardless of 

risk factors for severe illness, may participate. A total of approximately 1344 eligible subjects 

randomized in a 1:1 allocation ratio to receive either HCIP or control plasma stratified by age range 

(<65 years vs ≥ 65 years) and by center. 

 
Primary Aim: 

 The primary outcome of CSSC-004 will be the cumulative incidence of COVID-19 related 
hospitalizations or deaths prior to hospitalization* in those randomized to and transfused HCIP 
as compared to those randomized to and transfused with control plasma. 

*Hospitalization is defined as: i) any inpatient admission to a hospital, ii) any stay of >24 hours 
for observation in an ED, field hospital or other health facility, or iii) receipt of oxygen for >24 
hours regardless of location. This clarification is in response to surge and changes in hospital 
admissions in response to the surge. 



Secondary Aim: 

 The secondary outcomes are to: 

o Identify differences in serum SARS-CoV-2 antibody titers between active and control 
treatment arms at days (-1 or 0), 14, 28, and 90 from randomization. 

o Compare rates and duration of SARS-CoV-2 RNA positivity (by RT-PCR) of 
nasopharyngeal or oropharyngeal fluid between active and control groups at days (-1 or 
0), 14, and 28 days from randomization. 

Other Outcomes: 

 Time to severe disease status measured by ICU admission, invasive mechanical ventilation, or 
time to death in hospital 

 The time to resolution of COVID-19 symptoms based upon temperature logs and symptom 
score sheets as well as prevalence of COVID-19 symptoms on Day 90. 

 The levels of SARS-CoV-2 RNA between active and control treatment arms at days 14, and 
28, adjusted for baseline level 

 The rate of participant-reported secondary COVID-19 infection among household contacts 

 Oxygen saturation levels as measured by pulse oximetry (where available) between active and 
control groups through Day 28 

 Donor antibody titer to primary, secondary, and other endpoints 

 Correlation between antibody levels to target (SARS-CoV-2 spike protein, receptor binding 
domain, neutralizing antibody with SARS-CoV-2 virus) and outcome 

 
Power and Sample Size 

The planned sample size for the trial is a total of 1344 (1280*1.05 to allow a 5% oversample) subjects 
with a target goal of at least an equal number among those <65 and ≥ 65 years of age (n=672) or a 
slight bias towards those ≥65 years of age randomized in a 1:1 ratio to HCIP vs SARS-CoV-2 non- 
immune control plasma. 

To evaluate the power of the study, the following assumptions were made: 

1. The primary analysis will compare the efficacy of convalescent plasma in reducing the risk of 
hospitalization. We assume a one-sided Type I error rate (alpha) of 0.05 as we are interested in 
superiority and Type II error rate (beta) of 0.2. We also present in Table 1 below the sample size 
needed under 90% power. 

2. We assumed that the probability of hospitalization for those <65 years of age is 0.15 and for those 
≥65 years of age is 0.30 (data from CDC MMWR1). We then allowed the sample to be equally 
weighted among young to old (i.e., 50:50) as well as 40:60, 30:70, and 20:80. Therefore, we 
weighted the age specific risk for hospitalization accordingly to determine the overall samples risk 
under control plasma. We want to ensure that there are both younger and older individuals 
represented in the trial so we can assess effect heterogeneity by continuous age as a tertiary 
objective. 

3. It is anticipated that very few of these subjects will be randomized and not start study plasma 
infusion (and so be excluded from the primary analysis) or be lost to follow-up prior to resolution of 
symptoms (and so have missing data for the primary endpoint). 

4. Furthermore, we assume that the treatment effect of HCIP will be a reduction in risk between 15% 
and 60%. To estimate the sample size, we used the weighted age stratified risks and assumed 
this risk was by day 15 (such that the cumulative incidence for hospitalization or death prior to 
hospitalization no longer increases afterwards) for the controls and the treated group was the 
control risk reduced between 15 to 75%. Using these assumptions and data, we used an 



exponential model to identify the lambda parameter and the package ‘powerSurvEpi’ for the R 
statistical software was then used to calculate the sample sizes for these scenarios. 

5. In Table 1 below, we provide the total sample size according to three of the recruitment ratios of 
<65:≥65 years of age, 80 or 90% power, and three effect sizes of 25%, 30%, and 35% as percent 
reduction in the rate of hospitalization. In Figure 1 below we provide under 80% power, the sample 
sizes needed to detect the treatment effect between 15 and 60% reduction in risk and according 
to different age recruitment ratios. In table 2 with inclusion of 268 (~300) subjects with a target of a 
minimum ratio of 50:50 for <65:≥65 years of age, we expect to detect at least a 50% reduction in 
hospitalizations under 80% power. This is a 20% hospital rate in control and 10% in convalescent 
plasma treated. If the effect size in hospital rate reductions is 40% than a sample size of 455 will 
be needed. An overall reduction in hospital rates from 20% to 10% necessitates a sample size of 
268 with 80% power. 85 subjects will be the sample size for a reduction rate from 20% to 5%. 

6. Therefore, with a sample size of 1344 (1280*1.05 to allow for potential losses) with a target of a 
minimum ratio of 50:50 for <65:≥65 years of age, we expect to detect at least a 25% reduction in 
the rate of hospitalization under 80% power and a 30% reduction in rate of hospitalization with 
90% power. From the curve in Figure 1, an overall reduction in hospital rates from 20% to 10% 
necessitates a sample size of 268 with 80% power. 85 subjects will be the sample size for a 
reduction rate from 20% to 5%. 

 

 
Table 1 Sample sizes according to effect sizes, recruitment ratios of younger to older 
participants, and two levels of power 

 

Power:  80% Power  90% Power 

Hospital rate 

Reduction 
25% 30% 35% 25% 30% 35% 

< 65: ≥ 65  

50:50 1280 864 615 1772 1196 852 

40:60 1134 767 546 1571 1062 757 

30:70 1052 712 507 1457 985 703 

Table 2 Sample sizes according to effect sizes, recruitment ratios of younger to older 
participants, and two levels of power 
Power:  80% Power  90% Power 

Hospital rate 

Reduction 
40% 50% 60% 40% 50% 60% 

< 65: ≥ 65  

50:50 455 268 167 630 371 232 

40:60 404 239 149 560 331 207 

30:70 376 222 139 521 308 193 



Figure 1 Sample size by treatment effect for HCIP as a percent hospital rate reduction for 
four different ratios of recruitment of those <65 to ≥ 65 years of age 

Note: Sample size by treatment effect for HCIP as a percent hospital rate reduction for four different ratios of 

recruitment of those <65 to ≥ 65 years of age. Assumed an exponential model, alpha of 0.05, power of 0.8, risk by 

day 15 is a weighted average of the age specific CDC data1. 

 
Randomization 

The Data Coordinating Center (DCC) will work with the EDC developers (Prelude Dynamics) to 
generate random treatment assignments using a documented process. The randomization schedule 
will be designed to yield an expected allocation ratio of 1:1 for HCP + control plasma. Assignments 
will be stratified by clinical site and age group (age <65 years vs. age ≥65 years). Schedules will 
employ permuted block designs, with block sizes to be determined and documented at the DCC. 
Adjustment for residual or other imbalances in the baseline composition of the treatment groups, if 
needed, will be done using multiple regression techniques rather than through further stratification in 
the design. 

Treatment assignments will be masked to the participants and the personnel of the clinical sites, but 
not to an unmasked statistician associated with the DCC. This unmasked statistician will only provide 
unmasking information (1) to the DSMB, (2) if required for participant safety, and (3) to the analytical 
team after databases have been locked. Unforeseen circumstances that may require unmasking will 
need to be communicated to the DCC. Staff in the blood banks will also be unmasked to treatment 
assignments. 

Treatments will be assigned at the baseline visit using an online program accessible to the clinical 
sites. After the entry of specified pre-randomization data, each enrolled participant’s ID will be 



irrevocably linked to the next unassigned treatment for that clinical site. Upon notification of a 
randomization, an unmasked email is sent to the blood bank informing of the participant identifier and 
the treatment group assignment. Blood bank personnel will select an appropriate unit of plasma for 
transfusion and will mask (over-label) the unit consistent with local and federal regulations. The data 
system will also check for and prevent duplicate assignments (same participant randomized more 
than once). The treatment assignment tables in the data system will be encrypted to prevent 
inadvertent disclosures. 

The procedures related to randomization of participants at the clinical sites will be as follows: 

 Clinical sites will collect randomization eligibility and baseline data on the appropriate data 
collection instruments and will enter these data into the database. 

 The data system will confirm randomization eligibility, issue the next assignment, and will relay 
treatment assignments to the DCC (masked) and blood bank (unmasked) as described above. 

 The data system will automatically store the date and time of assignment, the identity of the 

clinical site personnel making the assignment, the participant’s ID, and the treatment group 
assignment. 

The data system will provide access to randomization materials, including a visit schedule and 
allowable time windows for visits. 

 
Statistical Principles 

General principles for analysis in CSSC-004 include the following: 

 The primary analysis will be performed according to the participants’ original randomized 
treatment groups excluding those who do not initiate transfusion of study plasma (modified 
intention to treat). 

 All participants, including those who have withdrawn from the study or were found to be 
ineligible after randomization, will be included in their assigned treatment group and analyzed 
for safety. 

 All outcomes, including death, following randomization and more specifically after transfusion 
due to modified intention to treat analysis will be included. 

Missing data will be minimized by study design and conduct. It will be addressed analytically 
using multiple imputation methods 

Analyses will be done to explore differences in the outcomes between the treatment groups. Results 
of these analyses will be presented unadjusted (crude) and adjusted for covariates. Variables chosen 
for adjustment are specifically for increasing precision in estimates of treatment efficacy and thus 
must be predictive of disease outcome [Diaz et al, Lifetime Data Anal (2019):25]. To identify the 
adjustment variables, we will utilize a hybrid approach of pre-specifying some variables and using an 
algorithmic approach to identify variables to adjust for among pre-specified candidate variables. 
Variables that we are near certain to be predictive of outcome will be adjusted for. Age has been 
consistently related to worse outcomes for COVID-19 and therefore will be included in analyses for 
adjustment. Other pre-specified variables that will be candidates for inclusion in primary analysis will 
be determined via an algorithmic approach and these variables will include: SARS-CoV2 vaccination 
status prior to transfusion, lag between time of convalescent plasma donation and transfusion as 
potential proxy for different viral variants between time of donation and participant receiving plasma, 
clinical site, race, ethnicity, sex, category of exposure, hematology factors and other laboratory 
markers (i.e., CBC and metabolic panels), body mass index, ABO blood group, targeted physical 
exam, time between SARS-CoV-2 exposure and transfusion of plasma, and prior comorbidities that 
have specifically been associated with worse COVID-19 outcomes including: asthma, chronic kidney 
disease, chronic lung disease (COPD, idiopathic pulmonary fibrosis, cystic fibrosis), diabetes, 
hemoglobin disorders (thalassemia, sickle cell disease), immunocompromising conditions (cancer, 



HIV, organ transplantation, prolonged use of corticosteroids), chronic liver disease, hypertension, and 
serious heart conditions (heart failure, coronary artery disease, cardiomyopathies, pulmonary 
hypertension), obesity, smoking status, dementia, down syndrome, pregnancy, 
stroke/cerebrovascular disease, and substance use disorders [updated to CDC list on website on 
5/29/2021 and Guan et al Eur Respir J. 2020 May; 55(5)]. To determine which of these pre-specified 
candidate variables to be included, we will conduct variable selection by random survival forest in the 
entire sample (i.e., not including an indicator term for treatment arm) and blinded to treatment 
allocation. The variable importance and 95% confidence intervals [Ishwaran et al Statistics in 
Medicine. 2019;38] shall be used to identify predictive variables for the outcome and included in 
analytical models. Specifically, variables in which the 95% CI for the variable importance from the 
random forest does not contain 0 will be adjusted for. This should reduce the number of variables that 
the analysis adjusts in order to minimize the degrees of freedom that are use while allowing the 
analysis to include the variables that have the most correlation with the outcome in order to maximize 
precision. This hybrid approach will be done on the full sample and not include the treatment arm 
(i.e., among entire sample without controlling for convalescent or control plasma) in order to identify 
the prognostic baseline variables for entire sample. 

Exploratory analyses will be considered using post randomization data. In addition, treatment effects 
will be examined across various subgroups, including clinical sites and vaccination status prior to 
transfusion of either convalescent or standard plasma. However, power to detect subgroup 
differences will be limited, so these analyses will be exploratory. Additional sensitivity analyses will 
be performed as appropriate. 

The pre-randomization variables listed above (age and the pre-specified candidate variables) will be 

explored and described according to summary statistics (mean and variance or 25 th, 50th, and 75th 

percentiles or proportion as appropriate for type of variable) by treatment group and overall. Analyses 
will be done in the R statistical software. 

There will be one formal review of interim results after 40 percent of the randomized participants have 
completed follow-up data collection. Stopping guidelines will be based on a non-binding Hwang-Shih- 
DeCani spending function with gamma=-4, which approximates the O’brien-Flemming boundaries, for 
both upper and lower bounds. The interim analysis Z-value boundary of 2.68 (nominal p=0.0037, 
spent alpha=0.0037) for the upper bound and -0.59 (p=0.277, spent beta=0.0148) for the lower. For 
final analysis the Z-value is 1.66 (p=0.049, spent alpha=0.0463, spent beta=0.1852) for a one-sided 
test with Type 1 of 0.05. 

 

 
Primary Analysis: 

Our primary hypothesis is that by providing anti-SARS-CoV-2 plasma, the cumulative incidence of 
hospitalization or death prior to hospitalization related to COVID-19 infection will be lower than the 
individuals receiving control plasma over the course of follow-up. Hospitalization will be captured in 
the case report forms and adjudicated from medical records. 

Our analysis will be a time to event analysis examining the effect of anti-SARS-CoV-2 plasma. We 
will estimate the survival function for each treatment arm in order to estimate the risk difference over 
time as well as the restricted mean survival time which is the area under the survival function and 
provides the expected mean time to hospitalization or death up to time t. Our approach will be to 
estimate the cumulative incidence using the doubly robust estimator based upon targeted minimum 
loss based estimator as described by Diaz et al (2019). By adjusting for baseline covariates that are 
related to the outcome, we increase precision. This TMLE based approach was shown to increase 



precision by around 10% to 20% over an inverse probability weighted or augmented inverse 
probability weighted estimator [Diaz 2019]. As stated above, we will use a hybrid approach of 
adjusting for pre-specified variables (age) and an algorithmic approach to identify additional variables 
related to the outcome. Specifically, a random survival forest will be used to identify variables that are 
related to the outcome in order to increase precision. We will use a random survival forest blinded to 
the treatment arm allocation and not including an indicator variable for treatment (pre-randomization 
variables to be considered are listed above). This hybrid approach will preserve degrees of freedom 
for the primary analysis by only including variables that have prognostic value for the outcome in 
order to increase precision. 

In addition, for subgroup/heterogeneity analysis we will examine the effect of convalescent plasma 
on our primary outcome of hospitalization by participant sex, age, antibody status at transfusion, time 
from initial symptoms, medical condition risk factors, and vaccination status. Each subgroup analysis 
will be done separately following the procedures above. Additionally, we will create a prognostic score 
using the factors that are identified in the hybrid algorithm to be adjusted for. As these variables are 
related to the outcome, we can define a prognostic score based on these variables which is a score 
for prognosis for hospitalization as well as a balancing score for these variables. Therefore we can 

then assess whether heterogeneity of treatment effect may exist based upon this score4. The score 
will be modeled both continuously as well as categorically. 

Specifically, regarding treatment effect of HCIP by the age of the patient, we will assess whether 
there is an indication of treatment effect heterogeneity. However, we have not powered the study to 
identify interaction between convalescent plasma and age. Therefore, this analysis is purely 
exploratory. To assess treatment heterogeneity, we will allow for interaction terms between the 
indicator for treatment arm and age as a continuous variable using the methods described for the 
primary analysis. The relationship between the modification of treatment effect by age may not be 
linear with age and therefore we will allow for non-linearity using splines. Additionally, we will examine 
treatment heterogeneity by age using categories (<40, 40 to <65, ≥65) as well as by a binary indicator 
for age being above the median age. 

 
The primary outcome analysis will be the adjusted comparison of proportions of cumulative incidence 
of hospitalization or death since randomization and over follow-up comparing the risk-difference and 
restricted mean survival time between treatment groups. Additional sensitivity analysis include: 

1. A per-protocol analysis that accounts for those who did were not transfused with their 
specific treatment group (i.e., non-adherence) using inverse probability weights to account 
for non-adherence. 

2. Individuals who receive monocolonal antibodies after transfusion will be artificially censored 
at time of receipt. Receipt of monoclonal antibodies after randomization is akin to receiving 
a similar treatment to convalescent plasma (e.g., passive immunization). Therefore, 
individuals who receive after transfusion is similar to not adhering to study protocol. 
Induced selection bias will be accounted for using inverse probability weights. This 
sensitivity analysis provides an estimate of the per-protocol treatment effect. This analysis 
will only be done if a substantial proportion of sample (>10%) has exposure to monoclonal 
antibodies prior to 15 days after transfusion (likely window of hospitalization). 

3. Classifying participants with missing outcome data as having experienced the outcome 
event with the date of the event being drawn from distribution reflecting the corresponding 
treatment arms; 

4. Repeat main analysis excluding individuals who are hospitalized between transfusion (day 
0) and day 1; 

5. Multiple imputation of the development of COVID-19 for missing outcomes; 



6. There has been reports of families as well as individuals living at same address (e.g., 
roommates) enrolling in this trial. Data on relationships and whether participants have the 
same address are being collected. The potential concern is for violation of independence of 
observations between individuals enrolled in the trial. Therefore, we will assess the 
potential for correlation between individuals in clusters (i.e., intraclass correlation). Should 
the within correlation compared to between correlation be large enough (>0.1) we will 
conduct a sensitivity analysis accounting for clustering by these potential units. This will be 
done through a cluster bootstrap; 

7. A complete case analysis. 

8. Changing primary outcome from only COVID-19 related hospitalizations to any 
hospitalizations including COVID-19 hospitalizations. 

 
Secondary Analyses: 

Secondary outcomes for this study is to determine the relationship between convalescent and control 
plasma with i) the anti-SARS-CoV-2 antibody titer for individuals at days 14, 28, and 90 days post- 
randomization and ii) compare rates and duration of SARS-CoV-2 RNA positivity. 

Analysis of antibody titers will also primarily be descriptive, comparing the geometric mean titers at 
days (-1 or 0), 14, 28, and 90 between the randomized arms. Furthermore, it is of interest to describe 
the entire distributions of anti-SARS-CoV-2 titers by randomized arms and contrast these 
distributions. Therefore, we will use quantile regression in order to describe whether there is a shift or 

change in the titer distribution between randomized arms [Koenker, Quantile Regression, 2005]2. 
Quantile regression does not require the assumption of a parametric or any other type of distribution 
as it identifies the titer at each percentile. Given that this is a repeated measurement at days (-1 or 0), 
14, and 28, we will account for the correlation within individuals using a cluster bootstrap in order to 
properly estimate the p-value and 95% confidence intervals. 

Analysis of the rate and duration of SARS-CoV-2 RNA positivity between the randomized arms 
will primarily be descriptive examining proportion positive at days (-1 or 0), 14, 28, and 90 then 
among those who are positive whether individuals lose positivity status at a subsequent visit. To 
determine the proportion that are positive at each visit, we will do a pooled complementary log-log 
model in order to describe the cumulative incidence of SARS-CoV-2 PCR positivity over time. The 
pooled complementary log-log model is a discrete time-to-event-analysis that estimates the log 
hazard rate at each discrete time point. From this a cumulative incidence of positivity can be 
estimated. To determine the duration of positivity, the analysis is complicated by the exact day that an 
individual becomes positive and the exact day that an individual becomes negative is not known since 
SARS-CoV-2 PCR positivity will only be acquired at days (-1 or 0), 14, and 28. 

However, we can estimate a minimum and maximum amount of time that an individual was positive. 
For instance, if an individual is first negative at day 14 after being positive on day 0, then we know 
that this individual became negative between day 0 and 14. This is an example of interval censored 
data. Across all individuals we can describe the duration of positivity either using a non-parametric 
approach for time-to-event analysis, but more likely given the sample size a parametric model would 
provide more information in terms of duration by allowing interval censored data. We will assess 
several parametric distributions aiming for parsimony in the number of parameters being estimated 
due to the interval censored data which results in increased uncertainty in the model. To determine 
the best model, we will use Akaike’s Information Criterion (AIC) to choose the best model fit. 



Other Outcomes: 

Data for these planned hypothesis-generating analyses will be collected in pre-specified, 
standardized manner and will add to existing literature comparing active and control plasma groups 
and provide a foundation for future studies. We will assess: 

i) time to disease severity as measured by time to ICU admission or invasive mechanical 
ventilation, and time to death in the hospital, 

ii) time to resolution of COVID-19 symptoms based upon temperature logs and symptom 
score sheets as well as prevalence of COVID-19 symptoms on Day 90, 

iii) analysis of SARS-CoV-2 RNA at days 0, 14, and 28, 
iv) analysis of rate of participant reported secondary infection among housemates, 
v) oxygen saturation levels over time by treatment groups, 
vi) treatment effect by donor convalescent plasma antibody titer on primary, secondary and 

tertiary outcomes (controls will be given a titer value of 0). The analyses for treatment effect 
heterogeneity did not drive the sample size for this trial and therefore we are likely to be 
underpowered and these are therefore exploratory analyses. 

Similar to the earlier aim of comparing the anti-SARS-CoV-2 titers, the goal of this exploratory aim is 
to describe the distribution of SARS-CoV-2 RNA between randomized arms. Therefore, we will 

use the same approach as above of applying quantile regression. 

There is the potential that individuals receiving anti-SARS-CoV-2 convalescent plasma may have less 
disease severity than those receiving control plasma. While our primary endpoint examines time to 
hospitalization, for another outcome, we will examine 1) the time to admission to the ICU or 
mechanical ventilation and 2) time to death. Analyses will be conducted similarly to the primary 

endpoint of hospitalization or death prior to hospitalization. 

We will also examine the number of individuals that live in the same house as a participant, as well as 
the number of those individuals that became sick with COVID-19 during the participant’s 
convalescence period. Therefore, in order to estimate whether anti-SARS-CoV-2 plasma has had 
an effect on secondary infections, we will use a binomial model in which each individual living in 
the house is a Bernoulli trial. We will account for clustering by household using generalized estimating 
equations. 

Participants will self-assess their oxygen saturation levels using home pulse oximetry, when 
available. Therefore, we will compare the oxygen saturation levels between treatment arms and 
over time during follow-up using quantile regression similar to above analyses. 

 
We believe that the time to resolution of symptoms from the symptom score sheet that are 

included in the CDC guidelines for quarantine will be reduced. Therefore, our analysis will be a time 

to event analysis examining the effect of anti-SARS-CoV-2 plasma. Furthermore, we wish to assess 

the effect heterogeneity due to age. We will estimate the survival function for each treatment arm in 

order to estimate the risk difference over time as well as the restricted mean survival time which is the 

area under the survival function and provides the expected mean time to resolution of symptoms up 

to time t. The analysis of time to resolution of symptoms is complicated by the fact that some 

individuals will be precluded from having this event due to another event. Specifically, some 

individuals may die during the course of their disease. Therefore, this is a setting which is known as 

competing risks and an area with which we have much expertise. We will treat death during COVID- 

19 as a competing event to our primary outcome of interest being resolution of symptoms. However, 

we do not expect the number of deaths to be large, although we do expect a difference by age. Our 

approach will be to estimate the cumulative incidence using a non-parametric estimator for competing 



risks (i.e., Aalen-Johansen estimator) stratified by age intervals and treatment group. In order to 

increase power in a clinical trial, we will adjust for baseline covariates that are related to the outcome 

using inverse probability of treatment weights. We will also use cause-specific and subdistribution 

proportional hazards model. The current recommendation for competing risk data is to estimate both 

the cause-specific hazard ratio and the sub-distribution hazard ratios for all event types. This is to 

provide as much information such that fuller inferences can be made about the time-to-event 

processes that are occurring. 

 
The treatment effect of HCIP may vary by the SARS-CoV-2 antibody titer of the transfused 

plasma. One can view this as a potential dose-response where the active treatment arm actually 
consists of many different doses across participants (but at least titer levels >1:320). We will allow for 
non-linearity in the relationship between antibody titers and area under the curve and outcomes. 
Additionally, we will examine dosages corresponding to high and low antibody levels (1:3200 found in 
Argentina outpatient trial NEJM, DOI: 10.1056/NEJMoa2033700) as well as examining this in tertiles 
and median of the distribution of titers from this trial’s donated convalescent plasma. 

 

Handling of Missing Data: 

Every effort will be made to minimize missing data in the trial. For participants with missing covariate 
or outcome data, multiple imputation will be used for sensitivity analyses. Specifically, chained 
equations (MICE) will be used to predict missing variables but also to generate uncertainty around 
imputed point estimates. 

We will employ recommended strategies to prevent missing data: 

 We have developed a data collection schedule that will minimize participant burden and we will 

follow participants according to the data collection schedule regardless of compliance with the 
study intervention; 

 We will maintain frequent contact with the participants through visit reminder calls, texts, or 
emails; 

 We will provide a 24-hour phone number that participants can contact for questions and 
support; 

 We will employ rigorous training of clinic staff emphasizing the importance of: 

o Congenial interpersonal relationships between the participants and study staff; 
o Using the consent process to ensure that potential participants understand the 

commitment that they are making; 
o Addressing concerns if participants are dissatisfied so that the participant will remain in 

the trial; 
o Attempting to collect as much data as possible even if a participant cannot come to the 

clinic because of other obligations. 

We will collect data on timing and reasons for study dropout by treatment group to present in the 
CONSORT diagram. If participants who drop out of the study appear to be doing so for reasons 
related to the study, i.e., not missing completely at random, we will perform sensitivity analyses using 

methods that have been previously described3, such as multiple imputation techniques, best- and 
worst-case scenarios, and correlates of the drop out event included in the models. There are no 
standard statistical techniques for dealing with data that are missing not at random (MNAR). We will 
explore one or more of the sensitivity analyses for MNAR given in the NRC report [National Research 
Council, 2010]. Baseline characteristics of participants with missing measures will be compared 
between treatment groups. 



Adverse events of study treatment: 

We hypothesize that participants randomized to convalescent plasma will not have any increased risk 
to standard transfusions. Preliminary data from the expanded access protocol for treatment of 
COVID-19 by convalescent plasma among those with severe disease, suggests that the treatment is 
safe with low number of adverse events [Joyner et al, J Clin Invest. 2020]. 

Adverse event data will be collected continuously throughout the trial and analyzed by treatment 
group at each interim analysis. There will be a formal analysis of safety at approximately 5 and 20% 
of the targeted number of participants reaching 28 days of follow-up. We will also compare the rates 
of all serious adverse events (as specified by the Health and Human Services definition) using 
cumulative incidence. The primary safety endpoints are i) the cumulative incidence of treatment- 
related serious adverse events categorized separately as either severe infusion reactions or Acute 
Respiratory Distress Syndrome (ARDS) during the study period and ii) cumulative incidence of 
treatment-related grade 3 and 4 adverse events during the study period. 

Data collection for adverse events will be done via a combination of specific questions for anticipated 
effects and spontaneous participant report. We will present overall number of SAEs by treatment 
group and where differences exist, we will present those by organ system. As these are descriptive 
safety analyses no correction for multiplicity will be undertaken. 

 
 

Interim monitoring: 

A multidisciplinary DSMB that will be responsible for the protection of the safety of participants 
enrolled in the trial. The DSMB will adopt a charter describing its responsibilities and operating 
characteristics. The DSMB will review the accumulating data on the primary outcome (rate of 
hospitalization). At each interim analysis, the DSMB will make recommendations to the principal 
investigators about continuing, modifying, or stopping the trial. The DSMB will meet periodically to 
review interim reports and analyses derived from the accumulating data or related findings from 
sources external to the trial that may be needed to make recommendations to the principal 
investigators regarding: 1) overall efficacy and benefit/risk ratio, 2) efficacy and benefit/risk ratios 
within defined subsets of participants, and 3) overall and clinic-specific performance and data quality. 
Note that we will continuously monitor the number of primary events (i.e., hospitalization) in the entire 
study sample (both treatment groups). We are proposing to assess the overall event rate in the entire 
sample as to not spend alpha by assessing treatment arms. We would expect that the event rate 
would be essentially constant over the course of the study in order to evaluate whether it is 
approximately what we assumed. We would expect a probability of 0.126 for hospitalization for the 
entire study sample. Should this rate be lower than expected, we will consult with the DSMB on 
whether the study should be modified to increase the overall sample size. 

There will be one formal review of interim efficacy results occurring after 40 percent of the 
randomized participants have completed 28 day follow-up data collection. Interim analysis will be 
adjusted only for age. Stopping guidelines will be based on a non-binding Hwang-Shih-DeCani 
spending function with gamma=-4, which approximates the O’brien-Flemming boundaries, for both 
upper and lower bounds. The interim analysis Z-value boundary of 2.68 (nominal p=0.0037, spent 
alpha=0.0037) for the upper bound and -0.59 (p=0.277, spent beta=0.0148) for the lower. For final 



analysis the Z-value is 1.66 (p=0.049, spent alpha=0.0463, spent beta=0.1852) for a one-sided test 
with Type 1 of 0.05. 

All measures will be evaluated for outliers, and distributional assumptions will be checked to ensure 
applicability of the statistical procedures.  

 

Stopping guidelines: 

This trial can be terminated for any of the following reasons: 
1. One treatment arm is superior to the other with substantial confidence that exceeds the 

planned boundaries; 
2. Neither treatment arm is significantly different from the other and the possibility of achieving a 

difference is less than 10% with full enrollment; 
3. Side effects outweigh the potential benefits of treatment in one or both treatment arms; 
4. Data quality is compromised; 
5. Data accrual is too slow to finish the study in a reasonable time period after considering the 

pandemic course and the potential for secondary outbreaks of disease; 
6. External data suggests an accepted answer to the study question and investigators are no 

longer conducting the study under equipoise; 
7. The study question is no longer relevant to the clinical community; 
8. Adherence to the treatment arms is poor, leading to poor data quality; 
9. There is a loss of study resources to perform the study; 
10. There is evidence of fraud or misconduct in the study. 

Special attention will be given to progression to deaths in the HCIP treatment group given the low 
likelihood of these outcomes under the hypothesized treatment effect. 

These stopping guidelines have been adapted from Clinical Trials: A Methodological Perspective, 2nd Edition 

(Piantadosi 2005). 



Follow-Up 

Lost to follow-up (with reasons) (n= ) Lost to follow-up (with reasons) (n= ) 

Assessed for eligibility (n= ) 

Randomized (n= ) 

CONSORT Flow Diagram Frame 
 

 

 

 

 
 

 
 
 
 
 
 
 

 

Enrollment 

Excluded  (n=  ) 

- Not meeting inclusion criteria (n= ) 

- Declined to participate (n= ) 

Screening 

Allocation 

Randomized to control (SARS-CoV-2 non- 

immune) plasma (n= ) 

- Received control plasma (n= ) 

- Received HCIP (n= ) 

- Did not receive transfusion (n= ) 

Randomized to human coronavirus immune plasma 

(HCIP) (n= ) 

- Received HCIP (n= ) 

- Received control plasma (n= ) 

- Did not receive transfusion (n= ) 

Analysis 
Analysed  (n= ) 

- Excluded from analysis (with reasons) (n= ) 
Analysed  (n= ) 

- Excluded from analysis (with reasons) (n= ) 
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